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SLOW WAVE VANE STRUCTURE WITH ELLIPTICAL CROSS-SECTION SLOTS, AN ANALYSIS

Henry G. Kosmahl, Fellow IEEE!
Analex Corporation
3001 Aerospace Parkway
Brook Park, Ohio 44142

Abstract—Mathematical analysis of the wave equation in cylinders with elliptical cross-section slots was
performed. Compared to slow wave structures with rectangular slots higher impedance and lower power dissipation
losses are evident below a certain value of kh. These features could lead to improved designs of traveling wave

magnetrons and gigahertz backward-wave oscillators as well as linear traveling wave tubes with relatively shallow slots.
INTRODUCTION

The slow wave, slotted vane structure with or without an opposite parallel plane (Fig. 1) has been studied in
numerous studies (e.g., by Watkins [2] and by Collins [4]) in more depth. In either a linear version, as in Fig. 1, orin
circularly bent conﬁ guration this structure has been successfully used as slow wave circuitin traveling wave crossed field
amplifiers or oscillators. The structure has a forward wave fundamental with a backward wave as first space harmonic.
The latter has served as the most successful circuit for very high frequency: 300 to 2000 GHz, milliwatt power (backward
wave) voltage tunable oscillator. On the positive side, the favorable feature of this structure is its very high beam
interaction impedance, when the beam hole is placed into the vane just below y = 0. There the electric field decreases
slowly as sin k(y - y,) and sin ky, = 0, y, being the center of the beam hole. For this reason the transverse beam——-slow
wave structure—coupling coefficientis very large, M, > 0.9, much larger than in helices, coupled cavities, and similar
structures with exponential decay. On the negative side, this low pass filter circuit has a typical kh = wh/c versus B,L
characteristic: the curve rises rapidly with high velocity ups = ¢/2 to a point where B, L is approximately /3, bends over
into an almost horizontal (parallel to , L) shape where the group velocity ug is a small fraction of ¢, ug = ¢/100. One
is thus forced to work inside the “bend” region and compromise between high beam coupling impedance K 1/ug and
losses, also proportional to 1/u,. With rectangular slots itis not too difficult to achieve K= 200 to 300 Q with acceptable
losses on a short circuit. High impedance makes this circuit also attractive for low power, low voltage applications at
30 GHz, providing that construction of acircuit with vane spacing equal to approximately 1/5 mm =200 um is successful!

If it is, electrostatic beam focusing with a converging-diverging beam without external fields is feasible.

'Work performed for and supported by the Electron Beam Technology Branch, NASA Lewis Research Center, Cleveland, Ohio.



The analysis described by Collins in [4] does not assume a constant electric field in the gap aty =0. By expanding
the electric and magnetic fields across the gap of the form
Ez(z,y=0)eim‘ _ iEn o~ B,Z ot
n=—oo
inside the gap 0 <z < §; E; =0, 8 <z < L; an infinite by infinite determinant is obtained whose zero value yield the
coefficients E,; analysis performed? shows that the zero coefficient E,, (as assumed by Watkins [2]) alone gives an

accuracy of more that 98 percent, that is E; = constant to within ] to 2 percent across the gap!

In this study the replacement of the rectangular slot by one with an elliptical cross section with the small semi-
axis = 8/2 and the large = h has been examined with full rigor, except for assuming the constancy of E; across the gap
as discussed earlier. Results confirm expected behavior: due to smaller volume and shorter boundaries the slot energy
and the power dissipation in elliptical slots are smaller than those in rectangular slots. That means doubling the impedance
and cutting the losses, a very attractive feature for potential applications. Fabrication experiments have shown that
elliptical slots are not feasible to construct with an aspect ratio /5 = 15, as required by low voltage requirement V, <6
kV fora2 W, 30 GHz forward wave TWT. On the other side, higher voltage, low frequency crossed field amplifiers could
much benefit from higher impedance and lower losses. Since noise jitter and noise figure are proportional to the current

(rrértﬂlearst in the first powé'r), efficiency and noise could be improved.

The vane structure with elliptical slots could be used for design and construction of a BWO with lower starting

oscillation current due to higher K and lower losses.

In the analysis to follow the wave equation of an elliptic cylinder is solved, assuming a single component for E;
that behaves like the elliptic sine, in analogy to the treatment by Watkins. Although rigorous expressions were derived,
it would require extensive programming of Mathieu functions to established rigorous results. Such a project should,

perhaps, be carried out if interest in the possible applications is demonstrated.

LIST OF SYMBOLS
A: coefficients of expansion in Mathieu functions
a,, b, characteristic numbers in Mathieu equations
c constants

* Unpublished work at LeRC.



¢ speed of light = (g _p )12

o half confocal length of ellipses

C,n(&.q), Se, (€.9), F €y,,(&.q9), Gey,(§,q) Radial Mathieu Function

ce,(N.q), se,,(M.q) "elliptic cosine" and "elliptic sine" Mathieu Functions
d distance between top of vanes and opposite planar conductor
E electric field, [V/iem]
f frequency
flg, kh) function, Eq. (33)

g= (c o / NG} ) Jm metric factor in elliptical coordinates

H magnetic field, [A/cm]

h height of vanes

K interaction impedance [Q]

k=w/c wave number in vacuum

L period in slow wave structures

M longitudinal or transverse beam-wave coupling coefficient
m order of elliptic functions ce,,, Ce,,, etc., interger

m ) number of slot in periodic structure, interger

P power [watts]

g= k2c02/4 parameter in Mathieu equations

R; Skin effect surface resistivity [Q]

Uppy Uy phase or group velocity, [cm/sec]

W stored energy, [Joule]

w width

XY, 2 carthesian coordinates

Z, JHO—/G: wave impedance in vacuum [Q2]

Z, ordinary Bessel Functions J, or N,

GREEK SYMBOLS

03 Os . .. coefficients, Eq. (13)

B, slow wave propagation constant, axial

Y= +J Bi —k? slow wave propagation constant, radial



& clear space between vanes

En.x ' coordinates of an elliptical cylinder

€, permittivity of free space

CEMN =¥E&) - (M) product solution of wave equation in elliptical slots

Ao free space wavelength [cm]

T permeability of free space
SUBSCRIPTS

D discipitated

m number of slot, interger

m order of elliptic (Mathieu) functions

n summation index for slow waves

e refers to elliptic

r order of coefficients, A,, interger

WAVE EQUATION IN ELLIPTICAL COORDINATES

In solving the wave equation inside the slots of elliptical cross section we are dealing with the geometry of an
elliptical cylinder that extends infinitely in the x-direction (J/dx = 0). When the two-dimensional wave equation in

vacuum

+k2{f,=o; k=

a8

= ofig, M

is transformed from the cartesian coordinates x,y,z into confocal elliptical coordinates [1], one obtains, see Fig 2,

2 2 2k2 2
976 +£+ 4C0 (cosh 2€ — cos 21} ¢ = 0 (2)

where &(€,M) = w(£) ¢(n)and ¥ is a function of £ alone and ¢ a function of v alone. Then we obtain

2 2 2.2
d \; +y d cé: + o
G on

o (cosh 2§ — cos 2n)y-¢ =0 3



and ¢ = y-¢ is either Eor H.
Dividing Eq. (3) by Y- ¢ leads to:

2C2

2o 2%k
%+ —4—9—c052n=a CY)

1 dz\y 2kzcg

1
cosh 26 = ——
v T e ohEETg

where a is a separation constant. Rearranging leads to two ordinary equations:

2 2k>c2
0, (a = 2 % cos 211]49 =0 (5)
an 4
2 2k2c?
‘;T‘f - (a - 4C° cosh 2§]w =0 6)

Equations (5) and (6) are called the canonical forms of Mathieu equations. If in Eq. (5) we write *if for 7, it is
transformed into Eq. (6), while (6) is transformed into Eq. (5) if +in is used for &. Sometimes this is considered a fluke—
but a lucky and useful one. Two functions which are solutions of Egs. (5) and (6), respectively, for the same values of
aand g = % cg /4 form a product that yields the desired functions ¢ = y-¢ = H or E. Since g may have any value,
the number of solutions could become unrestricted. However, the electromagnetic field is a periodic and single valued
function of 7 and £ and its solutions are linear functions. This is possible only for discrete values of the separation
constants a, called “characteristic numbers” @ = G, b They yield, in turn, ordinary and modified Mathieu functions
of integer order m, corresponding to @m, b,. Observe that we are interested only in cases where g = kzcg / 4 is positive,
g>0.

The periodic solutions of Eq. (5) of first kind are denoted either ce,,(1,¢) or se,,(1,g)—an abbreviation of
“cosine-elliptic” or “sine-elliptic”—are the ordinary Mathieu functions, while the “Radial” solutions
Ce,(£,q) and Se,,(£.q) and Fey,,(,q) are called modified Mathieu functions of the order m. They have to be

combined to form the product solutions that belong to the separation constants a,,

Ce,(£.q)ce,(M.9), Fey,,(& q)ce,,(n.9) (7)
and

Sem (E-" q)sem (n’ q) ? Geym (é’ q)‘?em (n’ q) (8)

that belong to the separation constant by,.



The corresponding functions in cases of circular cylinders (e.g., helix) are the ordinary or modified Bessel
functions (e.g., Im(y m'r)K(ymt) orJ, (ymt)N(ym'c) and cos(nm) or sin{mm). Notice that, in general, a, # b, and that
mixing of Mathieu functions other than that shown in (7) and (8) is not permitted. The power series for ordinary and

modified Mathieu functions were computed and tabulations may be found in [1] and [3].
DISPERSION EQUATION

We shall derive in this paragraph the dispersion relation f(w) = f(w/c) = f(k) for the finned structure shown
in Fig. 1 with slots having an elliptical shape. Since it is assumed that the slots extend infinitely in the x-direction
(perpendicular to the plane of paper) we are dealing with elliptical cylinders with no x variation, dfdx = 0; it is very
helpful and necessary to invoke the comparison with the case of rectangular slots, as treated by Watkins [2]. Watkins
takes only the O-order case with no variation of E and H along the boundary y = 0. The appropriate solution for standing

waves in cartesian coordinates is then {2] in the m-th slot (not to be confused with order in above)

sin k(y+ h) e_,'ﬁamL

E =E, prry mL<z<mL+$8 9
EZ=O,mL+8<z<(m+1)L (9a)
€ h) -
iop H, =-curl E;H, =i f—" ﬁ@—le iBomL (10
K, sinkh
H =0,mL+8<z(m+1)L (102)
X
E =E =H =H_=0 an

We take notice that both E and H are independent of z inside the rectangular slots! We are dealing witha TEM wave only.
Returning now to the case to be treated in elliptical cylinder coordinates it seems appropriate to use the Ansatz yielding
results of the form of Egs. (9) and (10). Since H, is in the direction of the axis of the elliptic cylinder that has a maximum

at the apex (bottom of slot), m = 0, we put the linear combination

H,(n.E) = Cee(n.q) -]:Cel (&.q)+ —2—2- Fey, (&, q)] . (12)
1



Equation (12) is the (product) solution of wave Eq. (2) in elliptic cylinder coordinates. Note that H (n, 5) isindependent
of x. ce (n.q), Ce (&, q) and Fey) are the angular and radial solutions of Egs. (5) and (6), respectively and are givenin
[1] and [3].

2 2
Cen(ﬂ,Q) =cosTn -%[1 + % + 1"9—2 + —~--)cos3n +1E93(1 + % + ---]COSSn -t - 13)
f —_—
oy G5

For values of g not too large (g < 8), the series converges quickly. Inour case g < n? /16 < 0.61685 . The radial functions

are
Cey(&.q)= ( ) [-A111(24/g coshg) + A}J3(2/g coshE) - ALJ5(2g coshg) + - ] (142)
Cé€,
Fey(§.q) = I\/(qT)[-A Ny(2/g coshE) + 4} Ny(2(g cosh) - 45 Ny(2(g coshE) += -] (145)
1
In Eq. (14)

cel’ (E,q) = _Le (T],q)

2
=—1+3q1+1+i— +-5——q2(1+i+ )+—... (13a)
=/ 8 g8 192 192 6

After dividing Eq. (14) by Al Eqgs. (14) may be written
A g
Ce (&.q) = ——+—= 11(2 q cosh &) - TJ3(2 q coshE_,) +
1

N
NE
cerl —.q
Feyl(é,q)=—-l—gzz—){N (2 qcoshg) N N 3(24/g cosh &)+ - . J (14b)

1

—15(2 qcosh&)—---:l (14a)

For an ellipse whose long half axis @ = ¢, cosh& >> b = ¢, sinh§ =

2 2
_(2_2_/2_5 _e___hk R ., 13
c, =ya —b" =,/h 4,cosh§—c = == > ~l+8h
0 B2 [ b )

= half gap width.

() KL%

1
With — = —
! 15

% as required for a 30 GHz TWT, cosh§ = 1.000556; and &, = 0.03345,

with a small error cosh £ can be taken as 1 in the arguments of the Bessel functions. Thus:



T

cel’(—-,q) Al Al

Cal%a) = ‘—fa_[fx(kco) - Ha(ke,) + 3s(ke,) - } (140
1 1

And because 8 << h, c, = h, and Eq. (14b) may be changed to

cell =.,q 1 1
Cel(a,q)=———(2——){fl<kh)—2— 1)+ .Js<kh)} (140)

1 1

and similar for the Fey; function.

Expressions for the coefficients A3, ,; will be derived later. On the long axis £=0,ontheellipse £ = £ and the argument
of the Bessel series, kk, changes to 1.00055 k& with negligible change in the Ce and Fey value. Thus, H, (n &) is almost
independent of £, or correspondingly, H(y) is independent of z in rectangular slots (Eq. (10)). The expression for the

electric field components Eg and E77 follow from Maxwell equation curl H = +i0e E

iz, oH,  Z, c,

(g n) = __k_—an =— ;——-Ccel(n,q)[Cel(é q) +F1 Fey, (&, q):l as)
iz, H, _.Z, 9Ce,(8,) . C, Fey(8.9)

Ep&m) = 258 =iy C“l‘“)[ E TG % ] o

with g = (Co / V2 )Jcosh 2& —cos2n , the elliptical metric factor. The arc lengths ds; and ds», the hyperbolic and elliptic

arc lengths, respectively are
dsy =gdé and ds, =gdn a7n

Note that ds) being perpendicular to the elliptic contour £ = const corresponds to changes across the gap (dz in [2]) and
ds, is perpendicular to hyperbolic lines m = const (dy in [2]). Differentiating Ce1(£,g) with respect to £ yields from
Egs. (14a) and (b):

RE:
scatsa) . 5) | 20 A0, 1
x \E 2./gsinh§ 3 A| 3 (18a)



n -

ce'(—,q) 1

aFe)’I(ésQ) - 1 2 .2 qsinhE_, aNl(p) _A_?aNB:(p) P (18b)
ap Al ap

%& N

with

p=2gcosng, 2O (o) - 0L 2y ) 3 p)
ap p dp p

etc. Because, in the 30 GHz case, sinh§ = 0.03345, | E, l <«< ! E ¢ | However, the tangential component of E is E,on
the elliptical surface £9. Eq. (18) shows that E; = O only for =0, that is on the confocal line. Because & << 0, sinh& = &
is very small but not zero. To force E,, to be rigorously zero on &y we have to force the brackett of Eq. (16) to become

zero on the surface § = &p. Thus:

A dFey(E.9)
(of ok
& g,

9Ce(&,9)
=k

=0 (19)

Note that when £ = 0, the argument of N becomes simply 2,g = kc,/2, regular and finite.

The constant C(3) is determined from the requirement (Eq. (19))

Observe that the Bessel expansion in Eq. (18b) is the same as that for Ce) given in Eq. (14a) since both, the J, and N,

functions have the same recurrance relations. It then follows from Eq. (19)

Ce{(_z—’q] J Al
- =1 Jl(kco coshi) - -A%J3(kco coshg) — e
1

A Al
+ C(z)[Nl(kco cosht ) - A—?N3(kco cosh&) + A—?Ns(kco cosh§) —+---H =0 (20)
5=g,

or

1 1
T ’ A r A ’
ke, sth_,o{C(l)lill(kco cosh §0) - —A%J:;(kco cosh&o) + A—?Js(kca coshéo)— +}
1 1

’ A; 4 A; ’
+ C(Z)[Nl(kca cos&,) - ;TN3(kco cosh, ) + ;TNS(kco coshE) -+ [+ =0 @n
1 1



In Eq. (21) the prime over the Bessel functions designates the “E” derivative. Equation (21) is not an eigenvalue problem
and it must be satisfied for all frequencies, that is regardless of the value of kc, = (w/c)c,. Since, as discussed earlier,

sinh&, # 0, the expression in the wave brackets must vanish.

We have then, using p, = k¢, cosh§, = kc,

Al Al
5i(pa) = <2 15(po) + 3 15(po) —+--
Cz(Q) =-C (g ) Ai ’ 1;; ’ 22)
Nl(po) - ¥N3(Po) + ;?Ns(po)—-t...

The coefficients A[, A3, As, -, A5, ) may be obtained from recurrence relations as given in [1] and [3]:

The relation for the desired function ce,(7,¢) and r 21 is
(¢, -1~ g)Al —gA} =0 (23a)
2]41 1 I
[a, -(2r+) ]A2r+l - q(A2r+3 + Azr_l) =0 (23b)

For g < 1, the series converges rapidly and the required ratios A;r +1 / Al1 are easily obtained for a given value a;—the

characteristic number (separation constant) which are listed in [1] and [3]. The required expression for a; is

2 3 1

¢ g 4
gL T o 24
% 97 "2 15367 -
Then
Al 2 3
_?=__q_+_q_+q_+... (25)
Al 8 64 1536

TableIlists the values of a,, A; , A; for arange of k¢, values as parameters. As g changes with frequency, the ratios are best
computed as functions of g. Nevertheless, for g, < n* /16, A; / A: =q/8; A; / Al1 = g° 192 to demonstrate the rapid
decay of coefficients Ay, with increasing r. The derivatives of the J(p) and N(p) functions with regard to the

argument are ([Z(p) either J(p) or N(p)]):

=~22,(0) + Z,_,(p) 26)

10



Equation (22) may then be evaluated. As an example for kc, =~ kh =14 and § 6 =0.03345 p = 14,
one gets Cz) =— 0.1851 C(yy. One should keep in mind, however, that Cz) = C2)(g), that is C(2) depends on frequency.
This is also true of the coefficients A,(g) = A,(kzcg /4) .Thus, the C(1), C(2), and the A,’s have to be computed as function
of g. Table II shows the dependence on g of some important parameters and Bessel and Neumann functions to
demonstrate their behavior. Note that for g < 1, that is of interest in this study, ‘AISI << lA;I << IA”and the Bessel-
Neumann series in the Egs. (20), (21), (23), and others converge rapidly. Nevertheless, the expressions are cumbersome
and for practical evaluation programming becomes indispensable.

We are turning now to the important expression for Eé (5 77) thathastobematchedatthegap y = 0~ or 1 = kh
to the E, component of y = 0+. From Egs. (12) and (15)

. Z, oH Z, , Co)
E;(&m) = -,k_; anx = -z;?ce,(n,q)c(,) Ce(&.q) + quyl(ﬁ,q) (27)

and ce{(n.q) = dee,(1,q)/on. We have to normalize the parameter C(1) = C1)(q) such that for 1 =kh:

z
—iécel’(kh,q)c(”[ ]1=E, (28)

The [ ] bracket designates the Bessel functions summations in Eq. (27)

E
Cyy = i —— s (282)

At the center of the gap & = 0. The value of np=4khaty=0" is close to kh =m/2. Let us put
n=kh=%—6, with 8 << 1. Then:

c &
g =7%Jcosh 28 —cos2n = ¢, 1-—2— = co(l —92/2) =%

and kg in Eq. (28) becomes kg = kc,. As discussed in the introduction the assumption E = E, in the gap is better than 98

percent accurate for narrow gaps and k >> 8. Using C(y) from Eqgs. (28) and (12) one gets

H(&m=- ’{EO"J("CO) 2o tud) (123)

zZ cej(1.9)

(4

11



, , 3( .q, g \sin3kh 5 2( q )sinSkh
—ce{(Mq)._,, =sinkh|1l - =g| 1+=+——+-." +——g | 1+
1N @)y [ sq[ 87192 sinkn 1927 U6 ) sinkn
sin 3kh sin Skh ]

—_ e

a 29
sin kh 3 Sinkh 29

= sin kh[l - 3(13

The dispersion relation (Eq. (1.67) or (1.79) in [2]) is obtained in our case by matching H: to H_ asgivenby Eq. (12a)
at the boundary of the gap, given by 1 = kh. Using Eq. (1.65) [2]

)
. k M _; '"_
HY=ioE, Y St LA (30)

ce, (kh,q &S Mo
Co"_c-;’((—kh))=k 2 —"..Z. (31)
1 ’q n=—o .Yn
{l—a (q)MHx (q)COSSkh _+] -
(cot kh) f(kh q)=(coskh] 3 cos kh 5 _coskh _s 2 M, )
sin kh -3 Sm3kh+5a sin Skh . Ln:—oo s

3sinkh " O sinkh
where 0;(q), a5(q)-- are the coefficients of the cosine expansions given in Eq. (13). We now rewrite

Eq. (32)

oM
¢, COtkhf(q,kh) = Z’y_o

oe

W LALA R LA [H MM, | MM, MM, MM, +}
nz0 yne/yoe L Yoe 7'—l/yo y—l/}’o 7—2/7/0 72/70
(33)
For large n, M, = (sinnz-8/L)/(nx-8/L) > 0 and y, = B, — 2mb/L — =

Further rearranging of Eq. (33) gives

5 M, /M, | tankh
Y,,Co =Y, h=—M, |1+ )y —felge| — (34)
oe "o oe L oe{ ’go ,Yne /.Yoe f(kh, q)

The subscript "e" denotes quantities belonging to "elliptic" solutions. The function f(kh,q) is equal to
1as k = w/c — 0 because g = kzc§/4 goes to zero as w> and 05, Qs, -+~ also become zero. It also equals 1 as
kh —> n/2 and has as shallow maximum around 1.08 at ki = m/4. Around the selected design point

kh = 1.45, f = 1.01 = 1. Comparing Eq. (34) with Eq. (1.67) [2]

12



M M M /M
I =k-§z—"-=§kh—0h1+2 n/My (1.67)
tan kh L&~y, L v 520 TnlYo

or

M /M
yh=£khtankhM 1+ ——"-Z-—" (1.67)
o L o

n#0 7'1/79

and assuming that the sums in the square bracket are not much different from each other in both cases one obtains an

. : 2 &
approximate expression | ¢, = /A" — —

4
h 1
= 35
Yoe= Vo Jh2 52 f(kh,q)-kh (35)
4
From Eq. (35) it follows
B2yl
= K+t (36)
Poc \/ ¢ 2 (k)

The plots B, L/m and B, - L/z versus kh as ordinate are shown in Fig. 3. [Expression (36) is a good
approximationwhen 17 = kh = #/2,thencos 2N =cos * = -1 and g = co/«/i Jeosh2¢ +1 = c, cosh ¢ = ¢ .The

case kh = m/2 is of interest for low voltage designs because then k = A4 /4. When 7 is much less than 7/2, then

g= %\Eosh 28 — cos2kh = %,/1 ~cos 2Kk = %Jz sin® kh = ¢, sinkh

because 0 <& <& <<1and cosh2f  =1+2 §<2) = 1. In the general case, the matching of H to H: at&=0is

accomplished by the expression

. cos3kh +o cosSkh o 06
E, 3 coskh 3 coskh -E—"ké 2 M, 37
sin 3kh o sin 5kh Z L

1- 30. + =—00
’ 3sinkh 05 sinkh n=— 7
or
M M M M
L fng)=2F a2 (l+—"/ J (372)
tankh La"’l Y. L7, = Yo/¥o

c . .
Atg=0g=—% 2sin kh = ¢, sinkh, Eq. (37a) becomes

13



<, sinkh-coskh S M
o2 f(khg)=——2
e =T Z’

(1 + Mo/, MOJ (38)
2 n#0

Yalo

Equation (38) is always accurate when & = 0 at the center of gap. As mentioned earlier, arigorous evaluation of
Eq. (1.67) as described by Collins [4] indicates that the M, = [sinB,(8/2)]/[B,(8/2)]should bereplaced by M which,

for small gaps, amounts to 2 percent correction. Thus, the corrected formulae should be rewritten as

M2 M2 M2 M2
__1__=§z_n_=§_02 1+_L/_0- (1.67a)
khtankh L4y, Ly, & Yu/Yo

for rectangular slots [2] and

M2 M2 M2
c, coskh = 1 -ﬂéz 1+ ne/Moe (382)
f(kh’ q) Yoe L Yne/ Yoe

nz0

as more correct expressions for the dispersion relation.
Power Dissipation in the Elliptical Slot
The expression for the power dissipated on the walls of the elliptical cylinder is given by
Py = ﬁmH (TLCI)|2 gdndx = R} K‘”H (TLfI)]2 gdn (39)
D 2 tan é___‘:’o ] 2 n §=§°
(R[’][Q] = 34,/p/A; p[Qem], l[cm]);

For small values &, << I, the ratio Cel(éo,q)/ Ce,(0.9) in Eq. (12a) may be taken as 1 with an error of

0.2 percent in the worst case and

2 [E, 2 2 ce,z(n,q)
et —(—Z:] (o) [cej(kh )] “

With g = ¢, /2 yJcosh2& — cos2n Eq. (39) becomes at £=¢,

P. = _Rﬁ E i (kc )2/[08'(1(;, q)]2 A jm cez(n q)\ﬁoshZE —cos2n dn (41)
D= |z, ) ol I N2 o T °
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, 2 2 ,
_R[E Y[ _keo | we, (B 2 57 |1 _ _cos2n
2 Z, Cel’(kh, ‘I) ‘\[2- -[0 “ (T]»Q) cosh 2§° ! cosh 2§o i #12)

The expression J 1 - cos2n/cos h2&  leads to elliptic integrals which are well tabulated or easily computed, but do not

yield a useful closed form formula. To examine the behavior of the integral in Eq. (41) let us rewrite

Jeosh2E, - cos2n = \/1 +282 + %53 -1+ 2sin®n+.. (42)

b . :
Now the ratio —, the minor to major half axes, equals to
a

= tanh¢.

_b__5/2 sinhé
a h

" cos hE,

For the 30 GHz Forward Wave TWT at 6kV: 8/2h=1/30, and § ) = 0.0333. For a high power Forward TWT
magnetron amplifier £, < 0.06. The highest ratio §/2h = 0.25 appears in the designs for ITHZ BWO, with the
resulting value & = 0.25. The value of the intergral in Eq. (41) is then approximately 10% larger than that obtained
with negligible 50 . Due to the smallness of 53 the integral and the integrand in Eq. (41) will be different only when

X
sin n < &, Figures 4(a)and (b) show computed values of F(x,§)=J‘01fE_,%+sin2n dn with £,=0.25 and
00666 and 1(x)= [sinn dn=~—cos K
. x)=1si =- .
3 ndan Tlo

For & = 0.06, at x = 0.2; F(x,£) = 0.025062 and I(x) = 0.01993342 or an error of 20 percent. But at kh = 1.5, the
actual upper integration limit, F/ (x, é) = 0.94 anerrorof only 1 percent. Thus, in computing the total loss we are justified

to neglect ég in Eq. (33). Then:

2
, 1 E Kh .
Py = RUE(E-O-) we,, -[0 celz(’q,q)sm’r]dr] (43a)
o

Using Eq. (13) for gmax < 0.5625; g2 < 0.316; etc. we may neglect higher powers in ¢ and a. celz(n, q) then

becomes

+ Ol
cosT| cosm

2
5
cef(n,q) = cos’ n[l oy B OO +]

= cos? n[l - 20t3(4cos2 n- 3) + 20:5(cos4 n- 10sin? 1']cos2 n+ Ssin™2 n) + ——]

= cos? n(l — 8oy cos? n+ 6a3) (44)

inserting Eq. (44) into the integral in Eq. (43a):

15



Xh xh
-[o ce}(n,q) sinndn zj cos2nsin n(l - 8aycos?n + 6a3)dn

3 1+ 6a
=21+ 6ocy) lk" + < cos nl"” — {1 - cos” k) + %a3(coss kh - 1) 45)

Integration from 0 to kh gives the approximate power loss on one side. Using Eq. (43a) for two sides one gets:

2 2
E k 1+6
= 1 2~R{'] Zo || —Za we, %3 (1 - cos® kh) + §(>L3(c055 kh - 1)
2 Z, | \ cej(kh.q) 3 5

’ 2 2
_R(E ke 3 24 s
= —é_ Z_Z m wc, (1 + 6(13)(1 — COs kh) + ?0{3(005 kh - 1) (46)
sin3kh sin Skh 2
From Eq. (29) [cel (kh, q)] = sin kh[l - 30!3 T + 5a — +]

47

.2
= sin2 kil 1 - 6 o, sin 3kh + 9a32 sin 23kh
sin“ kh

if a5 << @y as well as products @3-Qs are neglected. Now, at the operational point of interest

kh =14 to 1.5 and sinkh = 1; sin2kh = 0.1 and sin3kh = —1; thus, for kh = 1.5, Eq. (47) becomes
[cej(15.)] = (1 + 60ty + 902 )sin” kh
and Eq. (46) becomes approximately
Pp.| = %’[ET M(] -4.80,) (48)

Z, ] sin’kh

The corresponding result for rectangular slots of equal width w and height 4 and gap 3 is

Ry (E,Y in2kh 8§

] 0 sin
Ppp =2 < | whil+=——"+— (49)
DR sinzkh(zo] { 2kh h]

Equating Eqgs. (48) and (49):

wh[l + sin 2kh + é]
1 2 { 3 1 2kh h
—tkc | wh, |1 — =—— (50)
5 (8<0) ah? 2 sin’ kh(1-4.80,)

or

16



3 sin2kh &
1+ +—

ke =2 2kh __h _ 53 (50a)

° J1-480,)

For the ratio Py, / Pp, it then follows from Eqs. (46) and (49)

; sin 3kh 2 sin3kh
P 3 hl+§+M ) 1—6a3 - +0t3.2
DR _ h 2kh sin kh sin” kh (51
= o — 4
Poe 26 (ke,)” (14 6a,)(1 - cos’ kn) + 2—54a3(cos2 kh - 1)

Thus, below approximately kco= 1.53 the losses of an elliptical cylinder are smaller than those of an equivalent

2
rectangular counterpart. Moreover, they decrease roughly as (kco) = k2h2[1 - (52/ 4h2)] decreases. For a given
frequency k it means either a decrease in k (higher voltage) or increase in & (gap width). The former is of interest to

traveling wave magnetrons, since reduced losses result in lower noise output and for BWO's at harmonic frequencies,

where increasing d/h is a necessity.
Since the a coefficients are functions of frequency, accurate evaluation of Eq. (46) and others requires extensive

programming and computation work. The power losses in the space above y = 0 are identical to those obtained in

rectangular coordinates.

Stored Energy in the Elliptical Slot

Since H_(£,7) is the only magnetic field component, the stored energy is given by

w27 [ [ e Peana &

because integration from 0-£g covers only one half of the elliptical slot.

For small £ << 1, we neglect the dependence of H on £ as discussed earlier (see Eq. (14)) and obtain

0 Kb oo 2 2
J [_0) (kco)2 Icf;(k(:’% (cosh2€ — cos2n)dE dn (53)
ce (kh,q

17



@iéﬁT

wow
° lcel’(kh,q)l2 Z,
£, xh 8 (™
X [J§=Ocosh2§d§ Jn=o cet (n,q)dn - Io d‘éL celz(ﬂ,CI)cosTndn] (54)
_ E 2 cg (kco)2 sinh2§ 5 xh 5 »
“Z) 2 e T [ cman-t, [ e najeostnen Y

E 2 2 2
Po|Zo | ko] 0 )  feos? 4
el ST e cont [ ot ) st

xh
20, (cos4 n — 10sin? fcos? N + 5sin® T])}dn - 50-{0 cef(n,q)cosann] (55a)

In developing Eq. (55a) higher powers of a3 and as were neglected for simplicity,

o, being < 1/16, ag <1/256 and o5 < 1/192 in the worst case. When integration of the terms in Eq. (55a) is

performed, the following results:

2 2
E kC . .
w ~HolZ0 L-%w{c sinhE ¢ coshioﬁh—(l+-sm—2@-—4a3 sm2khcosz kh)
©AalZ) () 7 ove 2 2kh 2kh
1
2, kh(,  sin2kh sin4kh) 2, kh sindkh 1 sin° kh
- —|1+ + + —|1-3 -— 56
€050 4( %k 4kh 3957 sk 3 kh ©6)

Except for having neglected higher order terms of «, Eq. (56) is an accurate expression for W,.

Recall that ¢, sinh, = §/2 = half of the minor axis and ¢, cosh &, = h = half of the major axis and that

o [ = 5 [ Bt - cosmin

(,‘2 g, C2 n
=—2Q.£cosh2§d§'2“‘—2(l§o_gcoszndn (57)

2
= C—;—' sinh§, cosh&, - 2w = m-h-§/2 = area of an ellipse, because the second integral in Eq. (57) is zero. Let us
examine the result in Eq. (56). Since sinh &g and cosh o may be expanded in a series and for § << 1 the series converges

rapidly, Eq. (56) may be presented in the form:
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w (E YV (ke,) . & sin2kh  sindkh
W, =l Zo | Mool e M1 g, IO, St (58)
212, (cg) 2 k| 4k

o
Let us compare Eq. (58) with the simplest form of stored energy in rectangular slot of height 4 and width &

2
M, [ E &rw( sin2kh‘J
W =_02| 2 . 1+ 59
R4 (z] sin” kh 2kh o

o

Taking the ratio of Egs. (49) and (48) one gets approximately

5 (1 ,sin 2kh)
We _leilkha)]” s 2kh )
W, " (ke,) (k) €08, sin’kh
5 1+ 604 + Sl;z':h
=27 Sin kA (602)
(kco) €8, 1+205+ A
But §/2 = ¢,sinh§, = c & for § <<1,and then
[ Sin2kh
W . 4 2kh___ (60b)
w (k )3 sin4kh
e Cp) 1+205+ T

For kc, < 2, the numerical value of Eq. (60b) is larger than 1, a significant fact, that impacts the interaction impedance
toward higher values in elliptical slots. When the slots become less deep, k¢, = 1, Wgr/W, = 4 indicating large
improvements in impedance. The stored energy above the slots 0 < y < d is identical to that obtained in rectangular

coordinates, designated W,

sinh 27,
teo ;2
£ 2y,d
w,=2erawe? ¥ Koz T 61)
4 et Yn sinh® y,d

The total stored energy required for computing of the interaction impedance is the sum of Eqs. (56) and (61). Note that

E? £

0 0 2 2
U =2 _y J0pi_-¢cFE
0 Zg 0 u, 0 0 0.
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DISCUSSION OF RESULTS

The analysis developed in this study took as an approximation only one wave downwards into the half ellip-

tical slot represented by the ce,(n.g) function and its derivative cej(n,q). They correspond one by one to the simple
TEM wave representation (H ~ cos ky, E ~ sin ky) in the rectangular slot which leads to E;, = E = constant across the
gap and to an error of less than 2 percent, as discussed in the introduction. To include higher TM waves in elliptical
coordinates would require taking all cep,(1,g) with corresponding Ce,,,(&,q) and F eym(?;,q) functions and obtain then an
infinite by infinite secular determinant equal to zero. The resulting improvement in accuracy is probably in the same
range of 1 to 2 percent. Most numerical results quoted in this study were obtained by neglecting s and higher powers
of 0!3((1% , ag, . ) .For g = 0.5 the errors are g*/64 = 1/256 for each term. Altogether all the errors are likely to amount
to 5 to 10 percent, an error still acceptable for comparative evaluations.

The virtual constancy of E, across the gap J is evident from

oE, JE
VE=—2+—2%=0
dy 0z

When h >> & and 6 << A, E, being tangential to the slot wall is nearly zero inside. Then

raEzlaz = 0 and E, = constant.
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APPENDIX 1
TRANSVERSE BEAM-WAVE COUPLING COEFFICIENT OF THE SLOTTED
SLOW WAVE VANE STRUCTURE
Figure 5 shows a cross-section of a vane with height s and width w and a beam hole of radius b <<w.

The center of the hole is located at O” or a distance —y, below the top of vanes, y = 0. In the simple (but very accu-

rate) single TEM wave theory the electric field in the slots behaves as equation (9)

sin k(h + y) e—iﬁ”mL ©)

E(y)=E
0) =B —gm

We introduce now circular coordinates inside the beam hole with radius b centered at y = -y,. Consider a

narrow strip of thickness dy located at y = -y, + b cos o . The half width BA = b sin . The area of the strip dA is

dA = 2bsinady = - 2b%sin® ada (A1)
2
+
cosa = 4 Zy" ;sina = |1 — (%} (A2)

The area of the hole is, of course

0
= -2sz sin? ado = mb?
n

The magnitude of E; at y = -y, + b cos a is:

_ sink(h -y, +bcos a)
[E20)] = £, e A3)

The transverse beam coupling coefficient M is defined:

2
1 5 2% Yt [y+y ) 2
M:=—a— |E2dA= ——— 1-|2—22| |sin? k(h +
2 nszg-" 27" 2 sin kh j—yo—b b (h+5)dy
2 0.5 .
=——2—— | sin“asin“k(h —y_+ b cos a)da (Ad)
msin? kh L (r = )

with

sin k[(h - yo) + b cos a] = sin k(h - yo)cos(kb cos &) + cos K'(h - yo)sink(b cos x)

b
and, because kb = (kh 7 = 0.15 < 1, we may expand
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APPENDIX II
A BRIEF LOOK AT THE SUBMILLIMETER BACKWARD WAVE OSCILLATOR
IN ELLIPTICAL CROSS-SECTION SLOTS

To date the only successful BWO in the frequency range 500 to 2000 GHz is the vane structure (analyzed in this
paper) as used in the first space harmonic with opposite group and phase velocities (see Fig. 6).

Let us examine the design parameters of such a backward mode for the rectangular slots. The favorable range
lies at a phase shift SL = 2z — /3 because the group velocity becomes much smaller than ¢ and with it the coupling

impedance increases to required values to permit the start of oscillations.

The phase velocity v, = @/B_; is obtained from

ﬁ-l L=2; - ﬁoL (A7)
n.
with 8, L chosen to be 3t follows
5

B_-L= 57[ (A8)

(0] oL
V== (A9)

-1 Zq

3

Assume the choice of the beam voltage V, = 5000 V. Then the electron velocity u, = 4.166.109 cm/sec. For a frequency

of oscillations f = 1000 GHz = 1012 Hz one gets

v =u, =§£ (A10)
—T
3
L. 9
L=ud— =2t SBI0JY 547,103 cm
°2f 6 f 6 110

The operational point on the kh = F(BL) dispersion curve has a value ki = 1.4 =(@/c)h and

h= 1.4% = 6.684-103 cm (All)

Thus h/L = 1.926 and because 6 = L/2

=2;—==4 (A12)

| >

h_1&
L 28
If the slots were designed to have an elliptical cross section with the depth  (half major axis) and ¢, =1 f BZ - §2 /4 =h

we obtain for the important parameter kc, = kh =1.4 and from Eq. (60b)
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R 3

4

Thus the stored energy of elliptic slots is almost two times smaller, or the interaction impedance approximately two times
higher. To examine the impact of this result on the performance of the BWO we refer to Figs. 11.1-3 and 11.1-4 in [5]
reprinted as Fig. 7. In Fig. 7 the parameter Q/N, the quotient of the space charge parameter Q and the number N of

electronic wavelength on the structure is shown. Note that in the linear theory Q is independent of I,,!

°= %(z%) Ll 4@3'22;01«2 "
where C is Pierce’s gain parameter, w, the unreduced plasma frequency, @, = R- @ p» R being the plasma frequency
reduction parameter, b the beam radius, and K the effective interaction impedance. Knowing Q from Eq. (A14) and
assuming a range of values of N the value of CN= (I, " K.;/4V,)1/3 ° N necessary to start oscillations has been plotted in
Fig. 11.1-3. Knowing C, the necessary current I, may be calculated.

An examination of the curves in Fig. 11.1-3 indicates adouble benefit for the starting current as result of increased
interaction impedance K ;: First, increased value for K. reduces the value of the passive mode parameter Q according
to Eq. (A14). For a selected value N and an assumed or measured value of loss decreasing Q moves the corresponding
CN ordinate to lower values. Then, secondly, because @, = R-w p increasing K. decreases L, the starting current, such
that the product I, K_) remains constant. It appears, therefore, that doubling the impedance would reduce the required
Io-stant by a factor higher than two, a very valuable advantage. As an example, the Thompson-CSF made 1THz BWO
which utilizes the very same vane circuit with rectangular slots, has the following design parameters at

f=1THz = 1000 GHz:

L= 40pm
6= 20pm
h= T75um
N= 30

w= 90 pum

b= 22 pm (beam opening radius)
Vo= 7TkV;I,=22 mA;

Jp =1750 A/cm2 (current density in the beam)

This extremely high requirement for current density imposes great difficulties on the cathode life and gun construction.

Any relief by factor 2 or more would be highly beneficial and necessary.
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TABLEL

ke 2| A3/AL | AJIAS
!
14 0.49 1.45811 -0.06508 | 0.001356
12 36 1.3431| --.047025 .00716
1.0 25 1.242 | -.03222 .00034
5 .1406 1.138 | -.01788 .00105
S 0625 1.062 | -.00787 00002
0 0 1 0 0
TABLEIL
C
(¢))
0 0 8 0 0
S | .2422 | -14717 | -.1022 .3926
1.0 | 4400 | -7812 | -.2396 6272
12 | 4983 | -6211 -.234 .6433
14 | 5419 | -4791 | -.1851 6305
15 | 558 | -4323
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Figure 3.—Dispersion relation kh versus Byl/= for rectangular and
elliptical cross-section slots.
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Figure 4b.—F(x1£p) and I(x) versus x = kh for &, = 0.25 (BWO case).
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Figure 5.—Evaluation of the transverse beam coupling coefficient.
The O of the coordinate system is located at the center top of the

vane.
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